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Abstract

The Square element graph over a semigroup S is a simple undirected graph Sq(S) whose vertex set consists precisely of all the
non-zero elements of S, and two vertices a, b are adjacent if and only if either ab or ba belongs to the set {t2

: t ∈ S} \ {1}, where
1 is the identity of the semigroup (if it exists). In this paper, we study the various properties of Sq(S). In particular, we concentrate
on square element graphs over three important classes of semigroups. First, we consider the semigroup Ωn formed by the ideals
of Zn . Afterwards, we consider the symmetric groups Sn and the dihedral groups Dn . For each type of semigroups mentioned, we
look into the structural and other graph-theoretic properties of the corresponding square element graphs.
c⃝ 2019 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Graphs defined over algebraic structures reveal interesting interplay between graph-theoretic and algebraic
properties. For example, zero-divisor graphs [1] have shown that the set of zero-divisors of a ring has many underlying
properties which are significant from a graph-theoretic perspective.

Like the set of zero-divisors, we can consider another interesting set in an algebraic structure R, viz., the set of
squares of R (i.e., the set T = {x2

| x ∈ R}). It is interesting to observe that exactly like the set of zero-divisors, the
set of squares of a commutative ring is not closed under addition (in general) but is closed under multiplication. Using
the set of squares, Sen Gupta and Sen defined the square element graph over a finite commutative ring [2], where the
set of all non-zero elements of a finite commutative ring R is taken as the vertex set, and two vertices are adjacent
if and only if their sum is a square of some non-zero element of R. Later, Sen Gupta and Sen generalized the square
element graphs over arbitrary rings [3]. Now once the set of squares of a ring is determined, the square element graph
essentially uses only one operation of a ring. Hence, like the zero-divisor graphs, the square element graphs can also
be defined over a semigroup. We define the square element graph over a semigroup in the following way:
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Definition 1.1. Let S be a semigroup. We consider a simple undirected graph G = (V, E), where V = S − {0}, and
for any two elements a, b ∈ V , ab ∈ E if and only if {ab, ba}∩{t2

| t ∈ S, t2
̸= 1} ̸= ∅. Here 1 and 0 are respectively

the identity and the zero-element of S (if they exist). This simple undirected graph is called the Square element graph
over the semigroup S, and is denoted by Sq(S).

Remark 1.2. From the definition of Sq(S), it is easy to see that if S has a zero-element 0, then the zero-divisor graph
Γ (S) over S (studied in [4,5]) is a subgraph of the graph Sq(S) (since 0 = 02). Consequently, there is a path between
any two zero-divisor vertices in Sq(S), since Γ (S) is always connected.

Example 1.3. Let S = {(i, a, λ) | i, λ ∈ {1, 2} and a ∈ {0, 1}} ∪ {0}. We consider the matrix M =
[

0 1
1 0

]
whose

entries are from the set {0, 1}. Let pλ j denote the (λ, j)th entry of M . We define an operation ‘·’ on S as follows:

(i, a, λ).( j, b, µ) =

{
(i, apλ j b, µ) if pλ j ̸= 0
0 otherwise.

Then (S, .) becomes a completely 0−semisimple semigroup. Here, each non-zero element of (S, .) is a zero-divisor.
Now the zero-divisor graph Γ (S) is connected. Since Γ (S) is a subgraph of Sq(S) with the same vertex set as that of
Sq(S), it follows that Sq(S) is also connected. Now Sq(S) and Γ (S) are shown below (see Figs. 1 and 2):

Fig. 1. Γ (S).

Fig. 2. Sq(S).

We observe that Γ (S) is not complete, as (1, 0, 1) is not adjacent to (2, 1, 2) in Γ (S). Now we note that
(i, a, λ)2

= (i, apλ j a, λ). So if a = 0, then (i, 0, λ)2
̸= 0 if and only if (λ, i) = (1, 2) or (2, 1). The same is true

if a = 1. Hence the square elements in S are 0, (1, 0, 2), (2, 0, 1), (1, 1, 2), (2, 1, 1). So (1, 1, 1) ↔ (2, 1, 2) in Sq(S).
From Fig. 3, Sq(S) is seen to be isomorphic to the complete graph K8.

We now give some results regarding the connectedness of Sq(S).

Theorem 1.4. If S is a union of groups of odd order, then Sq(S) is connected with diam(Sq(S)) ≤ 2. In particular,
if G is a group of odd order, then Sq(G) is connected with diam(Sq(S)) ≤ 2.

Proof. Let S = G1 ∪ G2 ∪ · · · ∪ Gn , where the G i ’s are groups of odd order. Let x ∈ S. Then x ∈ G i for some
i ∈ {1, 2, . . . , n}. Let |G i | = r , where r is odd. Then xr

= e1 where e1 is the identity of G i . So x = (x
r+1

2 )2. This
shows that every element of S is a square element. Let a, b be any two vertices of Sq(S). If a = b−1, then a, b must
belong to the same group and hence we have a path a ↔ e ↔ b, where e is the identity of the group to which a, b
belong. If a ̸= b−1, then ab is a non-identity square element belonging to S (as every element of S has been shown to
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be a square). Thus a ↔ b. Hence Sq(S) is connected with diameter at most 2. In particular, it obviously follows that
for a group G of odd order, Sq(G) is connected with diameter at most 2. □

The converse of the last part does not hold in general, but it holds true if the group is commutative, as shown in the
next result.

Theorem 1.5. Let G be a finite commutative group. Then the following are equivalent:
(i) Sq(G) is connected.
(ii) All elements of G are squares.
(iii) |G| is odd.

Proof. (i) H⇒ (i i): Let Sq(G) be connected. Suppose S1 is the set of all square elements of G. If Sq(G) is a single
vertex graph, then all elements of G are squares. So we now assume that G has at least two elements. If possible, let
G contain non-squares. Now as Sq(G) is connected, there must be some square element t2, and some non-square m
such that t2

↔ m in Sq(G). Then, we have that t2m = s2 for some s ∈ G, which implies that m = (st−1)2. This
contradicts that m is a non-square. So all elements of G must be squares.

(i i) H⇒ (i i i): Suppose all elements of G are squares. If possible, let |G| = n, where n is an even integer. If
n = 2, then G ∼= (Z2, +). This is not possible, since (Z2, +) contains a non-square 1̄. So we assume that n > 2.
Clearly, n = 2km, where k ≥ 1 and m is odd with km ̸= 1. Then G has an element a of order 2. Suppose a = a2

1
for some a1. Then a4

1 = e. So o(a1) is 1, 2, or 4. Now a, a1 ̸= e, and a2
1 = a ̸= e. Hence, o(a1) = 4. Again, let

a1 = a2
2 for some a2. Now since a8

2 = e, we have that o(a2) is 1, 2, 4 or 8. It is easy to see that o(a2) = 8. We continue
this process and ultimately, we get an element ak such that o(ak) = 2k+1. This is a contradiction, since order of any
element in G has to be a divisor of 2km. So at is non-square for some 1 ≤ t ≤ k − 1, which is again a contradiction
as all elements of G are squares. Thus, |G| is odd.

(i i i) H⇒ (i): This follows from Theorem 1.4. □

In this paper, we concentrated on square element graphs defined over three special classes of semigroups. In [2],
the ring (Zn, +, ·) was considered. It seemed worthwhile to consider the semigroup Ωn formed by the ideals of Zn .
In Section 2, we studied the properties of Sq(Ωn). Then we considered square element graphs over Sn . Finally, we
looked at the dihedral groups Dn (which are noncommutative groups of even order) and looked into the various
graph-theoretic properties of Sq(Dn).

In this paper, a ↔ b denotes that the vertices a, b are adjacent. Again, the symbols diam(G), gr (G)χ (G), ω(G),
α(G), γ (G) respectively denote the diameter, the girth, the chromatic number, the clique number, the independence
number and the domination number of the graph G. For other graph-theoretic terminologies, one may refer to [6]. For
the algebraic terminologies, one may have a look at [7,8].

2. The graph Sq(Ωn)

In this section, we study the square element graphs over a special class of semigroups, viz. the semigroup formed
by the ideals of a ring. Specifically, we here consider rings of the form Zn .

For a ring R with identity, let ΩR denote the set of all left ideals of R. For any two ideals I, J of R, multiplication
‘·’ is defined by I · J = {a1b1 + a2b2 + · · · + anbn | ai ∈ I, bi ∈ J, i = 1, 2, . . . , n, n ∈ N}. Then (ΩR, .)
forms a semigroup. We are interested to study the square element graph over the semigroup ΩR . In particular, we
consider the ideals of Zn . For convenience, we denote the corresponding semigroup by Ωn instead of ΩZn . It is known
that the distinct ideals of Zn are precisely the ideals generated by the distinct divisors of n. Therefore, the number
of ideals in Zn equals the number of divisors of n. Hence, if n = pr1

1 pr2
2 · · · prk

k where p1, p2, . . . , pk are distinct
prime numbers and r1, r2, . . . , rk are nonnegative integers, then there are (r1 + 1)(r2 + 1) · · · (rk + 1) ideals in Zn .

So Ωn = {⟨0⟩, ⟨1⟩, ⟨p1⟩, ⟨p1 p2⟩, . . . , ⟨p1 prk
2 ⟩, . . . , ⟨pr1

1 · · · prk−1
k ⟩} is the set of all ideals in Zn . Note that in Ωn , no

element is invertible except the identity element ⟨1⟩.
For example, Ω6 = {⟨0⟩, ⟨1⟩, ⟨2⟩, ⟨3⟩}, and Sq(Ω6) is the following complete graph:
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In general we obtain the following.

Fig. 3. Sq(Ω6).

Theorem 2.1. The graph Sq(Ωn) is a complete graph if and only if n = p1 p2 p3 · · · pr for some distinct primes
p1, . . . , pr .

Proof. Let n = p1 p2 p3 . . . pr for some distinct primes p1, . . . , pr . If r = 1, then Sq(Ωn) is a single-vertex
graph and hence is complete. Next, let r > 1. Then Zn ∼= Zp1 × Zp2 × · · · × Zpr−1 × Zpr and hence there are
(1 + 1)(1 + 1) · · · (1 + 1) = 2r distinct ideals of Zn . If I is an ideal of Zp1 × Zp2 × · · · × Zpr−1 × Zpr , then
I = I1 × I2 × · · · × Ir−1 × Ir where Ik is some ideal of Zpk for k = 1, 2, . . . , r . Clearly, Ik is either {0̄} or Zpk .
Now Z2

pk
= Zpk and {0̄}

2
= {0̄}. Since this implies that I 2

k = Ik for all k = 1, 2, . . . , r , we have that I 2
= I .

Thus any ideal of Zp1 × Zp2 × · · · × Zpr−1 × Zpr is a square element. Let I, J be two non-zero distinct ideals of
Zp1 × Zp2 × · · · × Zpr−1 × Zpr , then I · J = (I · J )2

̸= ⟨1⟩. Hence I ↔ J . So the square element graph over the set
of all ideals of Zp1 × Zp2 × · · · × Zpr−1 × Zpr is isomorphic to K2r −1. Thus Sq(Ωn) is a complete graph.

Conversely, let Sq(Ωn) be a complete graph. If possible, let n = pr1
1 pr2

2 · · · prk
k with at least one ri > 1. If k = 1

(and hence r1 > 1), we have that the vertex ⟨1⟩ is not adjacent to the vertex ⟨p1⟩, and hence Sq(Ωn) is not complete in
that case. Let k > 1. Now Zn ∼= Zp

r1
1

×Zp
r2
2

× · · ·×Zp
rk−1
r−1

×Zp
rk
r

and hence the square element graph over the set of
all ideals of Zp

r1
1

× Zp
r2
2

× · · · × Zp
rk−1
r−1

× Zp
rk
r

is a complete graph. Without loss of generality, let r1 > 1, then ⟨p1⟩

is not a square element in Zp
r1
1

. This implies that ⟨p1⟩ × {0} × · · · × {0} × {0} is not adjacent to ⟨1⟩ × ⟨1⟩ × · · · × ⟨1⟩,
which is a contradiction as the square element graph over the set of all ideals of Zp

r1
1

× Zp
r2
2

× · · · × Zp
rk−1
r−1

× Z p
rk
r

is a complete graph. Thus each ri ≤ 1. Hence n must be of the form p1 p2 p3 · · · pr where p1, . . . , pr are distinct
primes. □

Next, we consider the connectedness of Sq(Ωn). We observe that Sq(Ωn) is not always connected. For example,
the graph Sq(Ω9) is not connected, as shown below (see Fig. 4):

Fig. 4. Sq(Ω9).
The following theorem gives the complete set of values of n for which Sq(Ωn) is connected.

Theorem 2.2. The graph Sq(Ωn) is connected if and only if n ̸= p2 for any prime p.

Proof. We consider the different values of n and look at the structure of Sq(n) accordingly.

Case 1: Let n = p1 p2 p3 · · · pr for some distinct primes p1, p2, . . . , pr . Then by Theorem 2.1, Sq(Ωn) is connected.

Case 2: Let n = pk for some prime p and k > 2. Then Ωn = {⟨1⟩, ⟨p⟩, ⟨p2⟩, ⟨p3⟩, . . . , ⟨pk−1⟩, ⟨0⟩}. Now in Sq(Ωn),
⟨pi ⟩ ↔ ⟨pk−1⟩ for i = 1, 2, 3, . . . , k − 2; and ⟨1⟩ ↔ ⟨p2⟩. This shows that we have a path between any two vertices
in Sq(Ωn). Thus the graph Sq(Ωn) is connected.

Case 3: Let n = pr1
1 pr2

2 · · · prk
k where p1, p2, . . . , pk are distinct primes, k ≥ 2, and r1, r2, . . . , rk ∈ N with at

least one ri > 1. Then Ωn = {⟨0⟩, ⟨1⟩, ⟨p1⟩, ⟨p1 p2⟩, . . . , ⟨p1 prk
2 ⟩, . . . , ⟨pr1

1 · · · prk−1
k ⟩} is the set of all ideals of Zn .

Without loss of generality, let r1 > 1. In this case ⟨
¯p2
1⟩ is a square element, which is adjacent to ⟨1̄⟩. Consider

a vertex of the form ⟨ps1
1 · · · psk

k ⟩ with s1 ≥ 1. Then we have a path ⟨ps1
1 · · · psk

k ⟩ ↔ ⟨pr1−1
1 pr2

2 · · · prk
k ⟩ ↔ ⟨p2

1⟩.
Next, consider an element of the form ⟨ps2

2 · · · psi
i · · · psk

k ⟩ with si ≥ 1. Then we have a path ⟨ps2
2 · · · psi

i · · · psk
k ⟩ ↔
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Fig. 5. Sq(Ωpq3 ).

⟨pr1
1 pr2

2 pr3
3 · · · pri −1

i · · · prk
k ⟩ ↔ ⟨pr1−1

1 pr2
2 · · · prk

k ⟩ ↔ ⟨p2
1⟩. Thus every vertex is in the component to which the vertex

⟨p2
1⟩ belongs. Hence Sq(Ωn) is a connected graph.

Case 4: Let n = p2, where p is any prime. Then Ωn = {⟨0̄⟩, ⟨1̄⟩, ⟨ p̄⟩}. Now ⟨1̄⟩ is not adjacent to ⟨ p̄⟩ and thus it is
easy to see that Sq(Ωn) is not connected.

Having considered all possible cases, we find that Sq(Ωn) is connected if and only if n ̸= p2 for some prime p. □

Corollary 2.3. When Sq(Ωn) is connected, diam(Sq(Ωn)) ≤ 6.

Proof. From the proof of Theorem 2.2, we see that for n = p1 p2 · · · pr , all the vertices of Sq(Ωn) are adjacent to
each other. Also, for n = pk (where k > 2), there is a path of length at most 3 between any two vertices. Finally, for
the remaining values of n (except for the form p2 for some prime p), we have a path of length at most 6 between any
two vertices (through the vertex ⟨p2

j ⟩ if r j > 2). So diam(Sq(Ωn)) ≤ 6 when Sq(Ωn) is connected. □

In the next result, we consider the planarity of Sq(Ωn).

Proposition 2.4. Sq(Ωn) is planar if and only if n is in one of the following forms:

n =

⎧⎪⎨⎪⎩
pqr , 0 < r ≤ 3
p2q2

ps , s ≤ 8.

where p, q are distinct primes.

Proof. First of all, we show that Sq(Ωn) is indeed planar for these values of n as mentioned. Let p, q be distinct
primes. The graphs Sq(Ωpq2 ) and Sq(Ωpq3 ) are shown in Figs. 6 and 5, respectively.

From the figures, it is clear that both the graphs Sq(Ωpq3 ) and Sq(Ωpq2 ) are planar. Similarly, it can be easily shown
that the graph Sq(Ωpq ) is planar as the number of the vertices of Sq(Ωpq ) is 3.

Next, we consider the graphs Sq(Ωp5 ), Sq(Ωp6 ), Sq(Ωp7 ), Sq(Ωp8 ), and Sq(Ωp2q2 ) where p, q are distinct prime
integers:

From Figs. 7, 8, 9, and 10, it is clear that the graphs Sq(Ωp5 ), Sq(Ωp6 ), Sq(Ωp7 ) and Sq(Ωp8 ) are all planar. Again,
it is easy to see that the graph Sq(Ωpr ) for r = 1, 2, 3, 4 is planar as the number of the vertices of the graph Sq(Ωpr )
is ≤ 4 for r = 1, 2, 3, 4. The graph Sq(Ωp2q2 ) is also planar, as shown in Fig. 11.

Now we show that for the remaining values of n, Sq(Ωn) is not planar.
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Fig. 6. Sq(Ωpq2 ).

Fig. 7. Sq(Ωp6 ).

Fig. 8. Sq(Ωp5 ).

Case I: If n = ps1
1 where s1 > 8, then we have a subgraph induced by the subset {⟨1⟩, ⟨p2

1⟩, ⟨p4
1⟩, ⟨p6

1⟩, ⟨p8
1⟩} which is

isomorphic to K5. Thus Sq(Ωn) is not planar.

Case II: If n = p1 ps2
2 where s2 > 3, then we have a subgraph induced by the subset {⟨1⟩, ⟨p1⟩, ⟨p2

2⟩, ⟨p4
2⟩, ⟨p1 p2

2⟩}

which is isomorphic to K5 and hence Sq(Ωn) is not planar.

Case III: If n = p2
1 p3

2 , then the subgraph induced by the vertices {⟨p2
1⟩, ⟨p2

1 p2⟩, ⟨p2
1 p2

2⟩, ⟨p3
2⟩, ⟨p2

2⟩, ⟨p1 p3
2⟩} has a

subgraph which is isomorphic to K3,3. So Sq(Ωn) is not planar.

Case IV: If n = p3
1 p3

2 , then the subgraph induced by the vertices {⟨p2
1 p2

2⟩, ⟨p3
1 p2⟩, ⟨p3

1 p2
2⟩, ⟨p1 p2

2⟩, ⟨p1 p3
2⟩, ⟨p2

1 p3
2⟩}

has a subgraph which is isomorphic to K3,3. So Sq(Ωn) is not planar.

Case V: If n = ps1
1 ps2

2 where s1 > 1 and s2 > 3, then there is a subgraph induced by the subset

{⟨1⟩, ⟨p2
1⟩, ⟨p2

2⟩, ⟨p4
2⟩, ⟨p2

1 p2
2⟩} which is isomorphic to K5. Thus Sq(Ωn) is not planar.

Case VI: If n = p1 p2 p3 ps4
4 · · · psr

r where p1, p2, p3, . . . , pr are distinct primes, si ≥ 0 and r ≥ 3, then we have a

subgraph induced by the subset {⟨1⟩, ⟨p1⟩, ⟨p2⟩, ⟨p3⟩, ⟨p1 p2⟩} which is isomorphic to K5. Hence Sq(Ωn) is not planar.

Case VII: If n = p1 p2 ps3
3 · · · psr

r where p1, p2, p3, . . . , pr are distinct primes, r ≥ 3 and s3 > 1, then we have a

subgraph induced by the subset {⟨1⟩, ⟨p1⟩, ⟨p2⟩, ⟨p1 p2⟩, ⟨p2
3⟩} which is isomorphic to K5. Hence Sq(Ωn) is not planar

in this case as well.
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Fig. 9. Sq (Ωp7 ).

Fig. 10. Sq (Ωp8 ).

Fig. 11. Sq (Ωp2q2 ).

Case VIII: If n = p1 ps2
2 · · · psr

r where p1, p2, p3, . . . , pr are distinct primes, r ≥ 3 and s2, s3 > 1, then we have a
subgraph induced by the subset {⟨1⟩, ⟨p1⟩, ⟨p2

2⟩, ⟨p2
3⟩, ⟨p2

2 p2
3⟩} which is isomorphic to K5. Thus Sq(Ωn) is not planar.

Case IX: Finally, if n = ps1
1 ps2

2 · · · psr
r where p1, p2, p3, . . . , pr are distinct primes, r ≥ 3 and s1, s2, s3 > 1, then we

have a subgraph induced by the subset {⟨1⟩, ⟨p2
1⟩, ⟨p2

2⟩, ⟨p2
3⟩, ⟨p2

1 p2
2⟩} which is isomorphic to K5. Thus Sq(Ωn) is not

planar.
So having considered all possible cases, we infer that Sq(Ωn) is planar if and only if n is of the form pqr

(0 < r ≤ 3), ps (for s ≤ 8) or p2q2, where p, q are distinct primes. □

We next consider the existence of cycles in Sq(Ωn).
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Theorem 2.5. Sq(Ωn) is acyclic if and only if n = pk for some prime p and some k ∈ {1, 2, 3, 4}. For all other
values of n, gr (Sq(Ωn)) = 3.

Proof. It is easy to see that for a prime p, Sq(Ωp) ∼= K1, Sq(Ωp2 ) ∼= 2K1, Sq(Ωp3 ) ∼= P3 and Sq(Ωp4 ) ∼= P4. So
Sq(Ωn) is acyclic if n = pk for some prime p and k ∈ {1, 2, 3, 4}. We next show that for all other values of n, Sq(Ωn)
contains a 3-cycle, and hence, is not acyclic.

If n = p1 p2, then ⟨1⟩ ↔ ⟨p1⟩ ↔ ⟨p2⟩ ↔ ⟨1⟩ is a 3-cycle.
If n = p2

1 p2, then ⟨1⟩ ↔ ⟨p2
1⟩ ↔ ⟨p2⟩ ↔ ⟨1⟩ is a 3-cycle.

If n = pr q with r > 2, then ⟨pr−1⟩ ↔ ⟨pq⟩ ↔ ⟨pr−1q⟩ ↔ ⟨pr−1⟩ is a 3-cycle.
If n = pr qs with r, s ≥ 2, then ⟨pq⟩ ↔ ⟨pr qs−1⟩ ↔ ⟨pr−1qs⟩ ↔ ⟨pq⟩ is a 3-cycle.
If n = p2qr , then ⟨p2r⟩ ↔ ⟨pqr⟩ ↔ ⟨p2q⟩ ↔ ⟨p2r⟩ is a 3-cycle.
If n = ps1

1 ps2
2 · · · psr

r with r > 2 and si > 1 for some i , then ⟨psi −1
i psr

r ⟩ ↔ ⟨ps1
1 ps2

2 · · · pi · · · psr
r ⟩ ↔

⟨ps1
1 ps2

2 · · · psi
i · · · psr−1

r−1 ⟩ ↔ ⟨psi −1
i psr

r ⟩ is a 3-cycle.
If n = p1 p2 · · · pr with r ≥ 3, then ⟨p1 p3 p4 · · · pr ⟩ ↔ ⟨p2 p3 p4 · · · pr ⟩ ↔ ⟨p1 p2 p4 · · · pr ⟩ ↔ ⟨p1 p3 · · · pr ⟩ is a

3-cycle.
If n = ps with s > 4, then ⟨ps−1⟩ ↔ ⟨ps−2⟩ ↔ ⟨ps−3⟩ ↔ ⟨ps−1⟩ is a 3-cycle.
Thus gr (Sq(Ωn)) = 3 for all the above cases. This completes the proof. □

3. Some results on Sq(Sn)

In this section, we discuss the graph Sq(Sn), where Sn is the symmetric group on a finite set of n symbols. First,
we give an interesting result, which is helpful in determining the adjacencies in Sq(Sn). The result was proved by M.
Snowden and J.M. Howie [9].

Theorem 3.1 (Theorem 1, [9]). An element α of Sn is a square if and only if for each even number k the decomposition
of α into disjoint cycles involves an even number of cycles of length k.

Remark 3.2. Using the above theorem we can show that the set of all squares in Sn is given by precisely the
permutations belonging to the subgroup An . For example, a square in S4 is either a 3-cycle, or a product of 2-cycles
or the identity permutation ρ0, i.e., the set of all squares of S4 consists precisely of the elements belonging to the
alternative group A4.

Example 3.3. Let us consider the graph Sq(S3). The non-commutative group S3 contains precisely three squares
{e, (123), (132)}. From Fig. 12 it is seen that Sq(S3) ∼= K3 + K1 + K2.

We now give the general structure of Sq(Sn).

Fig. 12. Sq(S3).

Theorem 3.4. For n ≥ 3, Sq(Sn) is a disjoint union of mK1 +
n!−2m

4 K2 and (p + 1)K1 +
n!−2p−2

4 K2, where p is
the number of those permutations in Sn which are the products of an even number of disjoint 2-cycles, and m is the
number of those permutations in Sn which are the products of an odd number of disjoint 2-cycles.

Proof. In the group Sn , the square elements are precisely the even permutations (by Remark 3.2). Then any two
distinct elements ρ, α ∈ Sn are adjacent if and only if either ρα ∈ An \ {ρ0} or αρ ∈ An \ {ρ0} where ρ0 is the identity
permutation. If ρ ∈ An and α ∈ Sn \ An , then ρ and α are not adjacent to each other since neither of ρα and αρ belongs
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to An \{ρ}. Therefore no element of An is adjacent to any element of Sn \ An . This implies that Sq(Sn) is disconnected.
Again, any element ρ ∈ An is adjacent to the identity element ρ0 as ρ0ρ = ρ. Let ρ1, ρ2 ∈ An . Then ρ1ρ2 ∈ An . Let
α ∈ An be a permutation of order greater than 2. Then α ̸= α−1. Thus α is adjacent to any other element of An except
its inverse α−1. Now let β be a permutation which is a product of an even number of disjoint 2-cycles. Then β = β−1.
Hence β is adjacent to any other element of An . Let p be the number of those permutations which are the products of
an even number of disjoint 2-cycles. So the subgraph induced by An is isomorphic to (p + 1)K1 +

n!−2p−2
4 K2. Again,

consider two elements α, β(̸= α−1) ∈ Sn \ An . Clearly, αβ(̸= ρ0) is an even permutation. So α and β are adjacent.
Now let α, α−1

∈ Sn \ An . Then there exists an element x(̸= α−1) ∈ Sn \ An different from α, α−1 such that we have a
path α ↔ x ↔ α−1. Thus the subgraph induced by Sn \ An is a connected subgraph. Let α ∈ Sn \ An be a permutation
of order greater than 2. Then α ̸= α−1. So α is adjacent to any other element of Sn \ An except α−1. Again, let β be a
permutation which is product of odd number of disjoint 2-cycles. Then β = β−1 and hence β is adjacent to any other
element of Sn \ An . So if m is the number of permutations which are product of odd number of disjoint 2-cycles, we
have that the subgraph induced by Sn \ An is isomorphic to mK1 +

n!−2m
4 K2. □

Next, we find out the values of n for which Sq(Sn) is planar.

Proposition 3.5. Sq(Sn) is planar if and only if n ∈ {2, 3}.

Proof. Let p = |{(ab)(cd) ∈ Sn | a, b, c, d are distinct}|. From the proof of Theorem 3.4, it follows that Sq(Sn) has
a subgraph isomorphic to K p+1 induced by the vertices of the form (ab)(cd) and the identity permutation. If n ≥ 5,
then p ≥ 4. Hence we have a subgraph in Sq(Sn) which is isomorphic to K5. Thus Sq(Sn) is not planar for n ≥ 5.
Now for n = 4, consider the set S = {(12)(34), (13)(24), (14)(23), (123), ρ0}. Then the subgraph induced by S is
isomorphic to K5. So Sq(S4) is not planar. Again it is easy to see that Sq(Sn) is planar for n = 2, 3. Thus the graph
Sq(Sn) is planar if and only if n = 2 or 3. □

We now consider the domination number of Sq(Sn). It is interesting to note that the domination number of Sq(Sn)
is same for all n > 1, as we show next.

Proposition 3.6. γ (Sq(Sn)) = 2 for n ≥ 2.

Proof. Since the graph Sq(Sn) is a disjoint union of two components (by Theorem 3.4), we have that γ (Sq(Sn)) ≥ 2.
It is easy to see that Sq(S2) ∼= 2K1, so {ρ, (1, 2)} forms a minimal dominating set. For n ≥ 3, consider a 2-cycle
ρ ∈ Sn \ An . Let α(̸= ρ) ∈ Sn \ An . Then αρ is an even permutation as both α and ρ are odd permutations. Hence,
αρ(̸= ρ0) ∈ An as α ̸= ρ−1(= ρ). So α ↔ ρ. Since α is arbitrary, it follows that every element in Sn \ An is adjacent
to ρ. Now we consider the set D = {ρ, ρ0} where ρ0 is the identity element. Any vertex from Sn \ {An \ D} is adjacent
to ρ and any vertex from An \ D is adjacent to ρ0. Hence D is a dominating set. Thus γ (Sq(Sn)) ≤ 2. Since we have
already shown that γ (Sq(Sn)) ≥ 2, it follows that γ (Sq(Sn)) = 2. □

4. The structure and some properties of Sq(Dn)

In this section, we study the square element graphs over the dihedral groups Dn . Before looking at the properties of
Sq(Dn), we start the section by giving a structural result which holds for Sq(G) defined over any group G whenever
the set of all squares of G forms a (normal) subgroup of G.

Lemma 4.1. Let H be the set of all squares of a group G. If H is a (normal) subgroup of G, then the elements
belonging to distinct cosets of H are not adjacent to each other in Sq(G).

Proof. Let G = {e, x1, x2, . . . , xn}. Since H forms a subgroup of G (which can be easily proved to be a normal
subgroup), the product of two squares in G is also a square in G. Clearly, y H = y−1 H for any y ∈ G. If possible, let
there exist vertices p, q belonging to distinct cosets aH and bH (respectively), such that p ↔ q in Sq(G). Suppose
p = ax2

r , q = bx2
s . So without loss of generality we have that ax2

r bx2
s = x2

t for some t ∈ {1, 2, . . . , n}. This implies
that ax2

r b = x2
t x−2

s ∈ H , which gives that x2
r b ∈ a−1 H = aH = Ha. So b ∈ x−2

r Ha = Ha = aH . However, this is
a contradiction since b ∈ bH and distinct cosets of H are disjoint. So p and q can be adjacent to each other only if
aH = bH . Thus two vertices belonging to distinct cosets of H cannot be adjacent to each other in Sq(G). □
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It is easily seen that the set of all squares of Dn forms a subgroup of Dn . So the above lemma is applicable for Dn .
Using the above lemma, we can find the structure of Sq(Dn) for an odd integer n.

Theorem 4.2. If n is an odd integer, then Sq(Dn) ∼= K1 +
n−1

2 K2 + Kn .

Proof. It is known that we can write Dn = {e, a, a2, . . . , an−1, b, ba, ba2, . . . , ban−1
}, where an

= e = b2 and
ab = ban−1. Clearly, the set of all squares of Dn is given by H = {e, a, a2, . . . , an−1

}, which is a cyclic subgroup of
odd order. Also, Dn = H ∪bH . By Lemma 4.1, vertices from H and vertices from bH are in different components in
Sq(Dn). Now e ↔ am for all m = 1, 2, . . . , n − 1; and ai

↔ a j if and only if i + j ̸= n. Thus, the vertices belonging
to H induce a subgraph Gn where Gn consists of n−1

2 disjoint copies of K2 and one isolated vertex. Next, we consider
the coset bH . Noting that every element in bH is of order 2 and that H is a normal subgroup, we see that the vertices
from bH induce a complete graph in Sq(Dn). Hence, Sq(Dn) ∼= K1 +

n−1
2 K2 + Kn . □

Next, we give the structure of Sq(Dn) when n is even.

Theorem 4.3. If n is an even integer, then

Sq(Dn) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(K1 +

n − 2
4

K2) + 2K n
2

if
n
2

is odd

n
4

K2 + 2K1 +
n − 4

4
K2 + 2K n

2
if

n
2

is even.

Proof. Let Dn = ⟨a, b⟩ where an
= b2

= e and ab = ban−1. So we can write Dn = {a, a2, a3, . . . , an−1, an(=
e), b, ba, ba2, . . . , ban−1

}. Since n is even, the set of all squares of Dn is given by H = {a2, a4, . . . , an−2, e}. It can
be shown that H is a normal subgroup of Dn . It is easy to see that there are 4 distinct cosets H , aH , bH , baH of
H which partition the group Dn . Clearly, aH = {a, a3, a5, a7, . . . , an−1

}, bH = {ba2, ba4, ba6, . . . , ban−2
} and

baH = {ba, ba3, ba5, ba7, . . . , ban−1
}. Now the subgraphs induced by these 4 cosets H, aH, bH, baH are disjoint

from each other by Lemma 4.1. In Sq(Dn), any two elements of the form ai and a j are adjacent if and only if
i + j (̸= n) is even; and two distinct elements of the form bai , ba j are adjacent if and only if bai ba j

= bai bai a j−i
=

(bai )2a j−i
= a j−i is a non-identity square, i.e., if and only if j − i is an even number. So in bH , we note that

(bai )2
= e and any two distinct vertices bai , ba j are adjacent to each other as bai ba j

= ai− j
∈ H \ {e} (as i − j

is even). Again in baH , (ba2k+1)2
= e and any two distinct vertices ba2k+1, ba2m+1 are adjacent to each other as

ba2k+1ba2m+1
= a2(k−m)

∈ H \ {e}. This implies that the subgraphs induced by bH and baH are both isomorphic to
K n

2
.
First, let n

2 be an even integer. Then H = {a2, a4, . . . , a
n
2 , . . . , an−2, e} and aH = {a, a3, . . . , a

n
2 +1, . . . , an−1

}.
In H , e and a

n
2 are the only self-invertible squares. Thus e and a

n
2 are adjacent to all other vertices in the subgraph

induced by H except themselves. For any other element v of H , v is adjacent to all other vertices of the subgraph
induced by H except itself and its own inverse. Therefore the subgraph induced by H is isomorphic to 2K1 +

n−4
4 K2.

In the subgraph induced by aH , any vertex is adjacent with all other vertices of that subgraph except itself and its own
inverse. Thus the subgraph induced by aH is isomorphic to n

4 K2.
Next, let n

2 be an odd integer. So H = {a2, a4, . . . , a
n
2 −1, a

n
2 +1, . . . , an−2, e} and aH = {a, a3, . . . , a

n
2 , . . . , an−1

}.
In H , e is the only element which is self-invertible. So e is adjacent to any other vertex in H , and any v(̸= e)
is adjacent to all other vertices in that subgraph except its own inverse. Thus the subgraph induced by H is
isomorphic to K1 +

n−2
4 K2. In aH , a

n
2 = (a

n
2 )−1 and so a

n
2 is adjacent to all other vertices in the subgraph

induced by aH . Any other vertex a2k+1(̸= a
n
2 ) is not self-invertible and hence is adjacent to all other vertices in

that subgraph except its own inverse an−2k−1. Hence the subgraph induced by aH is isomorphic to K1 +
n−2

4 K2. So
the subgraphs induced by H and aH are isomorphic to 2K1 +

n−4
4 K2 and n

4 K2 (respectively) if n
2 is even, and are

both isomorphic to K1 +
n−2

4 K2 if n
2 is odd. Therefore, Sq(Dn) ∼=

n
4 K2 + (2K1 +

n−4
4 K2) + 2Kn/2 if n

2 is even and
Sq(Dn) ∼= 2(K1 +

n−2
4 K2) + 2Kn/2 if n

2 is odd. □

Now we consider the planarity of Sq(Dn).
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Fig. 13. Sq(D4).

Fig. 14. Sq(D6).

Fig. 15. Sq(D3).

Theorem 4.4. Sq(Dn) is planar if and only if n ∈ {1, 2, 3, 4, 6, 8}.

Proof. If n is an odd integer and n ≥ 5, then there is a subgraph of Sq(Dn) which is isomorphic to K5 (by
Theorem 4.2). Hence in this case Sq(Dn) is not planar. Now Sq(D1) has only two vertices and hence is planar.
Again, Sq(D3) is also seen to be planar (cf. Fig. 15). Now let n be even. Then there is a subgraph of Sq(Dn) which
is isomorphic to K n

2
(by Theorem 4.3). In this case, if n ≥ 10, then there exists a subgraph of Sq(Dn) which is

isomorphic to K5. Hence Sq(Dn) is not planar for any even n ≥ 10. Finally, we consider Sq(Dn) for n = 2, 4, 6, 8.
The graphs Sq(D4), Sq(D6), and Sq(D8), as shown in Figs. 13, 14, and 16, are planar. Having considered all the
possible cases, we see that Sq(Dn) is planar if and only if n ∈ {1, 2, 3, 4, 6, 8}. □

Moving on, we find the chromatic number of Sq(Dn) for different values of n.

Theorem 4.5.

χ (Sq(Dn)) =

{
n if n is odd
n
2

if n is even.
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Fig. 16. Sq(D8).

Proof. Let Dn = ⟨a, b⟩ where an
= b2

= e and ab = ban−1. First, let n be odd. Then it follows from the proof
of Theorem 4.2 that in Sq(Dn) there are exactly two components (induced by H and bH ). In this case, the subgraph
induced by bH is isomorphic to Kn . Now we associate n different colours c1, c2, . . . , cn with the n distinct vertices
of bH , and we also correspond those n colours c1, c2, . . . , cn to the n distinct vertices of H . In this way we are able
to colour every vertex of Sq(Dn) such that no two adjacent vertices have the same colour. Therefore χ (Sq(Dn)) ≤ n.
Again, ω(Sq(Dn)) ≥ |V (Kn)| = n. So χ (Sq(Dn)) ≥ ω(Sq(Dn)) ≥ n. Thus χ (Sq(Dn)) = n.

Next, let us assume that n is even. Then by the proof of Theorem 4.3, we have that Sq(Dn) is a disjoint union
of 4 subgraphs (induced by the cosets H, aH, bH and baH ). In this case we need to associate n

2 different colours
c1, c2, . . . , c n

2
to the n

2 vertices of bH as the subgraph induced by bH is isomorphic to K n
2
. We note that the subgraphs

induced by H, aH, baH and bH are disjoint components having n
2 vertices each. So for each component, we can

correspond those n
2 colours to the distinct vertices. Hence χ (Sq(Dn)) ≤

n
2 . Again, ω(Sq(Dn)) ≥ |V (K n

2
)| =

n
2 . Hence

χ (Sq(Dn)) ≥ ω(Sq(Dn)) ≥
n
2 . So χ (Sq(Dn)) =

n
2 . □

In the next result, we consider the domination number of Sq(Dn).

Proposition 4.6.

γ (Sq(Dn)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if n is odd

5 if n is even and
n
2

is also even

4 if n is even and
n
2

is odd.

Proof. Let Dn = ⟨a, b⟩ where an
= b2

= e and ab = ban−1. If n is odd, then we consider the set D = {e, b}.
From the proof of Theorem 4.2, we can easily see that D is a minimal dominating subset of the graph Sq(Dn). Thus
γ (Sq(Dn)) = 2. Again, if n is even and n

2 is odd, then from Theorem 4.3, Sq(Dn) is disjoint union of 4 components.
So γ (Sq(Dn)) ≥ 4. From the proof of Theorem 4.3, it is easily seen that the set A1 = {e, a, b, ba} is a dominating
subset. So γ (Sq(Dn)) ≤ 4. Therefore γ (Sq(Dn)) = 4. Next, let both n and n

2 be even. If H is the set of all squares
of Dn , then from the proof of Theorem 4.3 we have that Sq(Dn) is a disjoint union of 4 subgraphs induced by the 4
cosets H, aH, bH and baH . Let us consider the set A2 = {e, b, ba, a, an−1

}. Now e is adjacent to any element of
H \ {e}, b is adjacent to any element of bH \ {b}, ba is adjacent to any element of baH \ {ba}. Also, any element of
aH \ {a, an−1

} is adjacent to either a or an−1. Hence A2 is a dominating set for Sq(Dn). It can be easily checked that
none of {A2 \ {a}, A2 \ {an−1

}, A2 \ {e}, A2 \ {b}, A2 \ {ba}} is a dominating set (note that a is not adjacent to an−1).
Therefore A2 is a minimal dominating set of the graph Sq(Dn). Thus γ (Sq(Dn)) = 5 in this case. This completes the
proof. □

We conclude the paper by considering the independence number (i.e., the cardinality of a maximal set of
independent vertices) α(Sq(Dn)) of Sq(Dn).

Proposition 4.7.

α(Sq(Dn)) =

{
3 if n is odd
6 if n is even.
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Proof. Let Dn = ⟨a, b⟩ where an
= b2

= e and ab = ban−1. If n is odd, then we consider the set I = {b, a, an−1
}.

From the proof of Theorem 4.2, we see that I is a maximal set of independent vertices of the graph Sq(Dn). Thus
α(Sq(Dn)) = 3. Next, let n be even. As seen in Theorem 4.3, Sq(Dn) is a disjoint union of 4 subgraphs induced by the
vertices belonging to the 4 cosets H, aH, bH and baH , where H is the set of all squares of Dn . Now any two vertices
in the component induced by bH are adjacent to each other. The same is true for the component induced by baH .
Thus in any independent set of vertices of Sq(Dn), there can be only one element each from these cosets. Considering
the set H , any subset containing at least three elements is not independent, and the same is true for aH as well. Hence
the cardinality of any independent set is at most 1 + 1 + 2 + 2 = 6. In other words α(Sq(Dn)) ≤ 6. Now we consider
the set I1 = {a, an−1, a2, an−2, b, ba}. It is easy to see that I1 is an independent set of vertices and since |I1| = 6, it
follows that α(Sq(Dn)) ≥ 6. Hence α(Sq(Dn)) = 6. □
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